SIGNED *q*ROMAN *K*-DOMINATING FUNCTION OF COMPOSITION OF GRAPHS

¹Jun Klein J. Teves, ¹Joel G. Adanza, ^{2*}Giselle Ann A. Alvarez, ¹Michael P. Baldado Jr.

¹Mathematics Department, College of Arts and Sciences, Negros Oriental State University, Kagawasan Avenue, Dumaguete City, Philippines

^{2*}Physics and Geology Department, College of Arts and Sciences, Negros Oriental State University, Kagawasan Avenue, Dumaguete City, Philippines.

⁺giselleann.alvarez@norsu.edu.ph

ABSTRACT: Continuing the study of Roman dominating function, Ahangar et al. (2014) introduced and studied the signed Roman dominating function. A generalization of the signed Roman dominating function is the Roman k-dominating function which was presented and studied by Henning and Volkmann (2015). We present in this study an offshoot of the signed Roman k-dominating function, called the signed qRoman k-dominating function.

Let k be a positive integer. A signed qRoman k-dominating function on G is the function $f: V \to -1, 1, 2$ with the following two properties: (1) $f[u]_q = \sum_{v \in N(u)} f(v) \ge k$ for all $u \in V$; and (2) for every vertex v with f(v) = -1, there exists a vertex w with f(w) = 2 such that $vw \in E$. The weight of a signed qRoman k-dominating function is $w(f) = \sum_{v \in V} f(v)$. The signed qRoman k-dominating number of G, denoted by $\gamma_{qR}^k(G)$, is the minimum weight of a signed qRoman k-dominating function on G.

This study gave the signed qRoman 2-domination number of: crisscross graphs and tensor product of graphs. **Keywords:** Signed *q*Roman *k*-Dominating Function, Criss-cross Graphs, Tensor Product of Graphs.

INTRODUCTION

A signed Roman k-dominating function in a simple graph G = (V,E) is a function $f: V \rightarrow \{-1,1,2\}$ satisfying two properties. (1) $f[u]_a = \sum_{v \in N(u)} f(v) \ge k$ for all $u \in V$; and (2) for every $u \in V$ with f(v) = -1, there exists $y \in V$ such that $vy \in E$ and f(y) = 2. The weight of a signed *q*Roman *k*-dominating function is $w(f) = \sum_{v \in V} f(v)$. The signed qRoman k-dominating number of G, denoted by $\gamma_{aR}^{k}(G)$, is the minimum weight of a signed qRoman k-dominating function on G. This concept was introduced and studied by Henning and Volkmann (2015). The special case (the case k=1) came out first and was presented and studied by Ahangar et. Al. (2014). The case k=2 was also studied by Adanza et. al. (2015).

This study is an off shoot of the *signed Roman k-dominating function* called the signed *q*Roman *k*-dominating number of crisscross graphs and tensor product of graphs. A *signed qRoman 2-dominating function* on *G* is a function $f:V \rightarrow \{-1,1,2\}$ satisfying two properties. (1) $f[u]_q = \sum_{v \in N(u)} f(v) \ge k$ for all $u \in V$; and (2) for every vertex *v* with f(v) = -1, there exists a vertex *w* with f(w)=2 such that $vw \in E$. The subscript *q* was added to differentiate the two functions.

The two definition differ in the first condition. The signed Roman *k*-dominating function requires that $f[u] = \sum_{v \in N[u]} f(v) \ge k$ for all $u \in V$ while the signed

*q*Roman 2-dominating function only requires $f[u]_a = \sum_{v \in N(u)} f(v) \ge k$.

The *weight* of a signed *q*Roman *k*-dominating function is $w(f) = \sum_{v \in V} f(v)$. The signed *q*Roman *k*-dominating number of *G*, denoted by $\gamma_{qR}^k(G)$, is the minimum weight of a signed *q*Roman *k*-dominating function on *G*.

Let G = (V, E) be a graph and $u \in V$. The open neighborhood of u, denoted by N(u), consists of all vertices $y \in V$ such that $uv \in E$. The closed neighborhood of u, denoted by N[u], is given by $N[u] = N(u) \cup \{u\}$.

The path $P_n = (v_1, v_2, ..., v_n)$ is the graph with distinct vertices $v_1, v_2, ..., v_n$ and edges $v_1, v_2, v_3, ..., v_n$

vertices $v_1, v_2, ..., v_n$ and edges $v_1 v_2, v_2 v_3, ..., v_{n-1} v_n$. The cycle $C_n = [v_1, v_2, ..., v_n], n \ge 3$, is the graph with vertices $v_1, v_2, ..., v_n$ and edges $v_1 v_2, v_2 v_3, ..., v_{n-1} v_n$,

 $v_n v_1$. If *n* is even, then C_n is called an *even cycle*; if *n* is odd then Loading... is an *odd cycle*.

A *complete* graph of order *n*, denoted by K_n , is the graph in which every pair of distinct vertices are adjacent.

The *composition G*[*H*] of two graphs *G* and *H* is the graph with vertex set $V(G[H] = V(G) \times V(H)$ and edge set E(G[H]) satisfying the following condition: $(u_1, u_2)(v_1, v_2) \in E(G[H])$ if and only if either $u_1v_1 \in E(G)$ or, $u_1 = u_2$ and $v_1v_2 \in E(H)$.

The composition of $P_3[P_2]$ of graphs $P_3 = [a, b, c]$ and $P_2[x, y]$ is shown in Figure 1.

Int.(Lahore),35(4),431-434,2023

Let *k* be a positive integer. A signed qRoman *k*dominating function on *G* is a function $f:V \rightarrow \{-1,1,2\}$ satisfying two properties. (1)

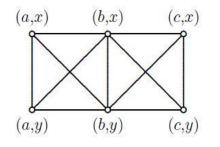
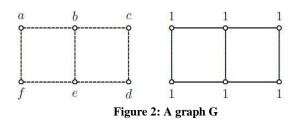


Figure 1: The graph $P_3[P_2]$ $f[u]_q = \sum_{v \in N(u)} f(v) \ge k$ for all $u \in V$; and (2) for every vertex v with f(v) = -1, there exists a vertex w with f(w) = 2 such that $vw \in E$. The *weight* of a signed qRoman k-dominating function is $w(f) = \sum_{v \in V} f(v)$. The signed qRoman k-dominating number of G, denoted by $\gamma_{qR}^k(G)$, is the minimum weight of a signed qRoman k-dominating function on G.

Let $V = \{a,b,c,d,e,f\}$ and $E = \{ab,bc,cd,de,ef,af\}$. Then the function $f:V \rightarrow \{-1,1,2\}$ given by $a \mapsto 1, b \mapsto 1, c \mapsto 1, d \mapsto 1, e \mapsto 1$ and $f \mapsto 1$ is a signed *q*Roman 2-domination number of *G*. Note that *f* is a minimum signed *q*Roman 2-domination number. Hence $\gamma_{aR}^{k}(G) = 6$.



PRELIMINARY RESULTS

This section presents the results of our study. Signed *q*Roman 2-domination Number of the Composition of Paths, Cycles and Complete Graphs.

In this section we gave some upper bounds for the signed *q*Roman *k*-domination number of composition of graphs.

Theorem 1 Let P_n and P_m be paths of order n and m, respectively. Then

$$\gamma_{qR}^{2} \left(P_{n} \left[P_{m} \right] \right) \leq \begin{cases} 4n, \text{ if } m \text{ is even} \\ 5n, \text{ if } m \text{ is odd} \end{cases}$$

Proof: Let P_n and P_m be paths of order n and m, respectively. Define $f:V(P_n[P_m]) \rightarrow \{-1,1,2\}$ by

$$f(i,j) = \begin{cases} 2, & \text{if } j = 1, m \\ 1, & \text{if } j \text{ is even}, 2 \le j \le m - 1 \\ -1, & \text{if } j \text{ is odd}, 3 \le j \le m - 1 \end{cases}$$

Then f is a signed qRoman 2-dominating function. Thus,

$$\gamma_{qR}^{2}(P_{n}[P_{m}]) \leq \begin{cases} 4n, \text{ if } m \text{ is even} \\ 5n, \text{ if } m \text{ is odd.} \Box \end{cases}$$

Theorem 2 Let P_n be path of order n and C_m be a cycle of order m. Then

$$\gamma_{qR}^{2}\left(P_{n}\left[C_{m}\right]\right) \leq \begin{cases} 4n, \text{ if } m \text{ is even} \\ 5n, \text{ if } m \text{ is odd.} \end{cases}$$

Proof: Let P_n be a path of order n and C_m be a cycle of order m. Define $f:V(P_n[C_m]) \to \{-1,1,2\}$ by

$$f(i,j) = \begin{cases} 2, & \text{if } j = 1, m \\ 1, & \text{if } j \text{ is even}, 2 \le j \le m - 1 \\ -1, & \text{if } j \text{ is odd}, 3 \le j \le m - 1. \end{cases}$$

Then f is a signed qRoman 2-dominating function. Thus,

$$\gamma_{qR}^{2}\left(P_{n}\left[C_{m}\right]\right) \leq \begin{cases} 4n, \text{ if } m \text{ is even} \\ 5n, \text{ if } m \text{ is odd.} \Box \end{cases}$$

Theorem 3 Let C_n and C_m be cycles of order n and m, respectively. Then

$$v_{qR}^{2}\left(C_{n}\left[C_{m}\right]\right) \leq \begin{cases} 4n, \text{ if } m \text{ is even} \\ 5n, \text{ if } m \text{ is odd.} \end{cases}$$

Proof: Let C_n and C_m be a cycle of order *n* and *m*, respectively. Define $f: V(C [C]) \rightarrow \{-1,1,2\}$ by

spectively. Define
$$j: v(c_n[c_m]) \neq \{-1,1,2\}$$
 by
$$\begin{pmatrix} 2, & \text{if } j = 1,m \\ 1 & \text{if } j = 1,m \end{pmatrix}$$

$$f(i,j) = \begin{cases} 1, & \text{if } j \text{ is } even, 2 \le j \le m-1 \\ -1, & \text{if } j \text{ is } odd, 3 \le j \le m-1. \end{cases}$$

Then f is a signed qRoman 2-dominating function. Thus,

$$\gamma_{qR}^{2}\left(C_{n}\left[C_{m}\right]\right) \leq \begin{cases} 4n, \text{ if } m \text{ is even} \\ 5n, \text{ if } m \text{ is odd.} \Box \end{cases}$$

Theorem 4 Let C_n be cycle of order n and P_m be a path of order m. Then

$$\gamma_{qR}^{2} \left(C_{n} \left[P_{m} \right] \right) \leq \begin{cases} 4n, \text{ if } m \text{ is even} \\ 5n, \text{ if } m \text{ is odd.} \end{cases}$$

Proof: Let C_n be a cycle of order n and P_m be a path of order m. Define $f:V(C_n[P_m]) \rightarrow \{-1,1,2\}$ by

$$f(i,j) = \begin{cases} 2, & \text{if } j = 1, m \\ 1, & \text{if } j \text{ is even}, 2 \le j \le m - 1 \\ -1, & \text{if } j \text{ is odd}, 3 \le j \le m - 1. \end{cases}$$

Then f is a signed qRoman 2-dominating function. Thus,

$$\gamma_{qR}^{2} \left(C_{n} \left[P_{m} \right] \right) \leq \begin{cases} 4n, \text{ if } m \text{ is even} \\ 5n, \text{ if } m \text{ is odd.} \Box \end{cases}$$

Theorem 5 Let K_n be complete graph of order nand P_m be a path of order m. Then

$$\gamma_{qR}^2 \left(K_n \left[P_m \right] \right) \leq \begin{cases} 2n, \text{ if } m \text{ is even} \\ 3n, \text{ if } m \text{ is odd.} \end{cases}$$

Proof: Let K_n be a complete graph of order n, and P_n be a path of order m. Define

$$f: V(K_n[P_m]) \to \{-1,1,2\} \text{ by} \\ f(i,j) = \begin{cases} 2, if (i,j) = (1,1), (1,m), (n,1), (n,m) \\ 1, if j \text{ is odd and } 2 \le i \le n-1; \text{ or, } i = 1, n \text{ and } j \text{ is odd} \\ with 3 \le j \le m-2 \text{ if } m \text{ is odd and } 3 \le j \le m-1 \text{ if } m \text{ is even} \\ -1, if j \text{ is even and } 2 \le i \le n-1; \text{ or, } i = 1, n \text{ and } j \text{ is even} \\ with 2 \le j \le m-1 \text{ if } m \text{ is odd and } 2 \le j \le m-2 \text{ if } m \text{ is even} \end{cases}$$

Then f is a signed qRoman 2-dominating function. Thus,

$$\gamma_{qR}^{2}\left(K_{n}\left[P_{m}\right]\right) \leq \begin{cases} 2n, if m \text{ is even} \\ 3n, if m \text{ is odd.} \Box \end{cases}$$

Theorem 6 Let K_n be complete graph of order nand C_m be a cycle of order m. Then

$$\gamma_{qR}^{2}\left(K_{n}\left[C_{m}\right]\right) \leq \begin{cases} 2n, if m is even \\ 3n, if m is odd. \end{cases}$$

Proof: Let K_n be a complete graph of order n, and C_m be a cycle of order m. Define

$$f: V\left(K_{n}\left[C_{m}\right]\right) \to \{-1,1,2\} \text{ by} \\ 2, if (i, j) = (1,1), (1,m), (n,1), (n,m) \\ 1, if j \text{ is odd and } 2 \le i \le n-1; \text{ or, } i = 1, n \text{ and } j \text{ is odd} \\ \text{with } 3 \le j \le m-2 \text{ if } m \text{ is odd and } 3 \le j \le m-1 \text{ if } m \text{ is even} \\ -1, if j \text{ is even and } 2 \le i \le n-1; \text{ or, } i = 1, n \text{ and } j \text{ is even} \\ \text{with } 2 \le j \le m-1 \text{ if } m \text{ is odd and } 2 \le j \le m-2 \text{ if } m \text{ is even} \\ \text{with } 2 \le j \le m-1 \text{ if } m \text{ is odd and } 2 \le j \le m-2 \text{ if } m \text{ is even} \end{cases}$$

Then f is a signed qRoman 2-dominating function. Thus,

$$\gamma_{qR}^{2}\left(K_{n}\left[C_{m}\right]\right) \leq \begin{cases} 2n, \text{ if } m \text{ is even} \\ 3n, \text{ if } m \text{ is odd.} \Box \end{cases}$$

Signed *q*Roman 2-domination Number of the Union of Graphs.

In this section we get the signed *q*Roman *k*-domination number of the union of graphs.

Theorem 7 Let G and H be a graphs and $k \in \mathbb{N}$. Then $\gamma_{qR}^{k}(G \cup H) = \gamma_{qR}^{k}(G) + \gamma_{qR}^{k}(H)$ if $\gamma_{qR}^{k}(G)$ and $\gamma_{qR}^{k}(H)$ exists.

Proof: Let $G = (V_1, E_1)$ and $H = (V_2, E_2)$ be graphs. Suppose that $\gamma_{qR}^k(G)$ and $\gamma_{qR}^k(H)$ exists. Let f_1 and f_2 be signed qRoman k-dominating functions with $w(f_1) = \gamma_{qR}^k(G)$ and $w(f_2) = \gamma_{qR}^k(H)$. Define $f:V_1 \cup V_2 \rightarrow \{-1, 1, 2\}$ by $f(u) = \begin{cases} f_1(u), & \text{if } u \in V_1 \\ f_2(u), & \text{if } u \in V_2. \end{cases}$

Then clearly *f* is a signed *q*Roman *k*-dominating function of $(G \cup H)$. Since $w(f) = w(f_1) + w(f_2)$, we must have $\gamma_{qR}^k(G \cup H) \le \gamma_{qR}^k(G) + \gamma_{qR}^k(H)$. It can be shown that $\gamma_{qR}^k(G \cup H)$ cannot be less than $\gamma_{qR}^k(G) + \gamma_{qR}^k(H)$. Hence, $\gamma_{qR}^k(G \cup H) = \gamma_{qR}^k(G) + \gamma_{qR}^k(H)$. \Box

CONCLUSION

The results of signed qRoman k-domination maybe used in the design of communication networks. Furthermore, the results of this study will give a more complete understanding on the concept signed Roman k-domination in graphs. Since some interesting results are revealed in this study, I recommended that the signed qRoman kdomination number be investigated further such as composition of arbitrary paths, cycles and complete graphs.

Acknowledgement

The author wishes to express his thanks to the Negros Oriental State University administration particularly to the Mathematics Department for continuing support and assistance in this article.

REFERENCES:

- J. Adanza and M. Baldado. Signed qRoman k-Domination Number of the Join and Corona of Graphs. Mathematics Department (Negros Oriental State University, http://dx.doi.org/10.12988/arms.2015.57484
- [2] H. Ahangar, M. Henning, Y. Zhao, C. Lowenstein, and V. Samodivkin. Signed Roman domination in graphs. J. Comb. Optim., 27 (2014), 241-255.
- [3] A. Behtoei, E. Vatandoos, and F.A. Abad. The signed Roman Domination Number of Some Graphs, *arXiv:1411.7208v1 [math.CO]* 26, Nov 2014.

- [4] E. Cockayne, P. Dreyer Jr., S.M Hedetniemi, and S.T. Hedetniemi. Roman Domination in Graphs, *Discrete Mathematics*, 278(2004), 11-22.
- [5] H. Fernau. Roman Domination: a parameterized perspenctive, *Int J Computmath* 85, (2008), 25-38.
- [6] M. Kattimani and N. Hemalatha. Roman Domination Number of a Graph, *International Journal of Scientific and Research Publication*, Volume 6, Issue 6 2016.
- [7] P. Palvic and J. Zerovnik. Roman Domination Number of the Cartesian Products, *The Electronic Journal of Combinatorics* 19 (3) (2012), p. 19.
- [8] Fu Xuelang, Y. Yuansheng and J. Boaqi. Roman Domination in Regular Graphs, *Discreet Mathematics*, 309 (2009), 1528 – 1537